Galilei-covariant tensor formulation

The Galilei-covariant tensor formulation is a method for treating non-relativistic physics using the extended Galilei group as the representation group of the theory. It is constructed in the light cone of a five dimensional manifold.

Takahashi et. al., in 1988, began a study of Galilean symmetry, where an explicitly covariant non-relativistic field theory could be developed. The theory is constructed in the light cone of a (4,1) Minkowski space.[1][2][3][4] Previously, in 1985, Duval et. al. constructed a similar tensor formulation in the context of Newton–Cartan theory.[5] Some other authors also have developed a similar Galilean tensor formalism.[6][7]

Galilean ManifoldEdit

The Galilei transformations are

{\displaystyle {\textbf {x}}'=R{\textbf {x}}-{\textbf {v}}t+{\textbf {a}}}
{\displaystyle t'=t+{\textbf {b}}.}

where R stands for the three-dimensional Euclidean rotations, \textbf{v} is the relative velocity determining Galilean boosts, a stands for spacial translations and b, for time translations. Consider a free mass particle m; the mass shell relation is given by {\displaystyle p^{2}-2mE=0}.

We can then define a 5-vector, {\displaystyle p^{\mu }=(p_{x},p_{y},p_{z},m,E)=(p_{i},m,E)}, with i=1,2,3.

Thus, we can define a scalar product of the type

{\displaystyle p_{\mu }p_{\nu }g^{\mu \nu }=p_{i}p_{i}-p_{5}p_{4}-p_{4}p_{5}=p^{2}-2mE=k,}

where

{\displaystyle g^{\mu \nu }=\pm {\begin{pmatrix}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&0&-1\\0&0&0&-1&0\end{pmatrix}},}

is the metric of the space-time, and {\displaystyle p_{\nu }g^{\mu \nu }=p^{\mu }}.[3]

Extended Galilei AlgebraEdit

A five dimensional Poincaré algebra leaves the metric g^{\mu \nu } invariant,

{\displaystyle [P_{\mu },P_{\nu }]=0,}
{\displaystyle {\frac {1}{i}}~[M_{\mu \nu },P_{\rho }]=g_{\mu \rho }P_{\nu }-g_{\nu \rho }P_{\mu }\,}
{\displaystyle {\frac {1}{i}}~[M_{\mu \nu },M_{\rho \sigma }]=g_{\mu \rho }M_{\nu \sigma }-g_{\mu \sigma }M_{\nu \rho }-g_{\nu \rho }M_{\mu \sigma }+\eta _{\nu \sigma }M_{\mu \rho }\,,}

We can write the generators as

{\displaystyle J_{i}={\frac {1}{2}}\epsilon _{ijk}M_{jk},}
{\displaystyle K_{i}=M_{5i},}
{\displaystyle C_{i}=M_{4i},}
{\displaystyle D=M_{54}.}

The non-vanishing commutation relations will then be rewritten as

{\displaystyle \left[J_{i},J_{j}\right]=i\epsilon _{ijk}J_{k},}
{\displaystyle \left[J_{i},C_{j}\right]=i\epsilon _{ijk}C_{k},}
{\displaystyle \left[D,K_{i}\right]=iK_{i},}
{\displaystyle \left[P_{4},D\right]=iP_{4},}
{\displaystyle \left[P_{i},K_{j}\right]=i\delta _{ij}P_{5},}
{\displaystyle \left[P_{4},K_{i}\right]=iP_{i},}
{\displaystyle \left[P_{5},D\right]=-iP_{5},}
{\displaystyle \left[J_{i},K_{j}\right]=i\epsilon _{ijk}K_{k},}
{\displaystyle \left[K_{i},C_{j}\right]=i\delta _{ij}D+i\epsilon _{ijk}J_{k},}
{\displaystyle \left[C_{i},D\right]=iC_{i},}
{\displaystyle \left[J_{i},P_{j}\right]=i\epsilon _{ijk}P_{k},}
{\displaystyle \left[P_{i},C_{j}\right]=i\delta _{ij}P_{4},}
{\displaystyle \left[P_{5},C_{i}\right]=iP_{i}.}

An important Lie subalgebra is

{\displaystyle [P_{4},P_{i}]=0}
[P_{i},P_{j}]=0
{\displaystyle [J_{i},P_{4}]=0}
{\displaystyle [K_{i},K_{j}]=0}
{\displaystyle \left[J_{i},J_{j}\right]=i\epsilon _{ijk}J_{k},}
{\displaystyle \left[J_{i},P_{j}\right]=i\epsilon _{ijk}P_{k},}
{\displaystyle \left[J_{i},K_{j}\right]=i\epsilon _{ijk}K_{k},}
{\displaystyle \left[P_{4},K_{i}\right]=iP_{i},}
{\displaystyle \left[P_{i},K_{j}\right]=i\delta _{ij}P_{5},}

P_{4} is the generator of time translations (Hamiltonian), Pi is the generator of spatial translations (momentum operator), K_{i} is the generator of Galilean boosts, and J_{i} stands for a generator of rotations (angular momentum operator). The generator P_{5} is a Casimir invariant and {\displaystyle P^{2}-2P_{4}P_{5}} is an additional Casimir invariant. This algebra is isomorphic to the extended Galilean Algebra in (3+1) dimensions with {\displaystyle P_{5}=M}, The central charge, interpreted as mass, and {\displaystyle P_{4}=H}.[citation needed]

The third Casimir invariant is given by {\displaystyle W_{\mu \,5}W^{\mu }{}_{5}}, where {\displaystyle W_{\mu \nu }=\epsilon _{\mu \alpha \beta \rho \nu }P^{\alpha }M^{\beta \rho }} is a 5-dimensional analog of the Pauli–Lubanski pseudovector.[citation needed]

Bargmann structuresEdit

In 1985 Duval, Burdet and Kunzle showed that four-dimensional Newton–Cartan theory of gravitation can be reformulated as Kaluza–Klein reduction of five-dimensional Einstein gravity along a null-like direction. The metric used is the same as the Galilean metric but with all positive entries

{\displaystyle g^{\mu \nu }={\begin{pmatrix}1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&0&1\\0&0&0&1&0\end{pmatrix}}.}

This lifting is considered to be useful for non-relativistic holographic models.[8] Gravitational models in this framework have shown to precisely calculate the mercury precession. 


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.