Hilbert C*-module

Hilbert C*-modules are mathematical objects which generalise the notion of a Hilbert space (which itself is a generalisation of Euclidean space), in that they endow a linear space with an "inner product" which takes values in a C*-algebra. Hilbert C*-modules were first introduced in the work of Irving Kaplansky in 1953, which developed the theory for commutativeunital algebras (though Kaplansky observed that the assumption of a unit element was not "vital").[1] In the 1970s the theory was extended to non-commutative C*-algebras independently by William Lindall Paschke[2] and Marc Rieffel, the latter in a paper which used Hilbert C*-modules to construct a theory of induced representations of C*-algebras.[3] Hilbert C*-modules are crucial to Kasparov's formulation of KK-theory,[4] and provide the right framework to extend the notion of Morita equivalence to C*-algebras.[5] They can be viewed as the generalization of vector bundles to noncommutative C*-algebras and as such play an important role in noncommutative geometry, notably in C*-algebraic quantum group theory,[6][7] and groupoid C*-algebras.

DefinitionsEdit

Inner-product A-modulesEdit

Let A be a C*-algebra (not assumed to be commutative or unital), its involution denoted by *. An inner-product A-module (or pre-Hilbert A-module) is a complex linear space E which is equipped with a compatible right A-module structure, together with a map

 \langle \cdot, \cdot \rangle : E \times E \rightarrow A

which satisfies the following properties:

  • For all xyz in E, and α, β in C:
 \langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle
(i.e. the inner product is linear in its second argument).
  • For all xy in E, and a in A:
{\displaystyle \langle x,ya\rangle =\langle x,y\rangle a}
  • For all xy in E:
 \langle x, y \rangle = \langle y, x \rangle^*,
from which it follows that the inner product is conjugate linear in its first argument (i.e. it is a sesquilinear form).
  • For all x in E:
 \langle x, x \rangle \geq 0
and
 \langle x, x \rangle = 0 \iff x = 0.
(An element of a C*-algebra A is said to be positive if it is self-adjoint with non-negative spectrum.)[8][9]

Hilbert A-modulesEdit

An analogue to the Cauchy–Schwarz inequality holds for an inner-product A-module E:[10]

{\displaystyle \langle x,y\rangle \langle y,x\rangle \leq \Vert \langle y,y\rangle \Vert \langle x,x\rangle }

for xy in E.

On the pre-Hilbert module E, define a norm by

\Vert x \Vert = \Vert \langle x, x \rangle \Vert^\frac{1}{2}.

The norm-completion of E, still denoted by E, is said to be a Hilbert A-module or a Hilbert C*-module over the C*-algebra A. The Cauchy–Schwarz inequality implies the inner product is jointly continuous in norm and can therefore be extended to the completion.

The action of A on E is continuous: for all x in E

a_{\lambda} \rightarrow a \Rightarrow xa_{\lambda} \rightarrow xa.

Similarly, if {eλ} is an approximate unit for A (a net of self-adjoint elements of A for which aeλ and eλa tend to a for each a in A), then for x in E

 xe_\lambda \rightarrow x

whence it follows that EA is dense in E, and x1 = x when A is unital.

Let

 \langle E, E \rangle = \operatorname{span} \{ \langle x, y \rangle | x, y \in E \},

then the closure of <E,E> is a two-sided ideal in A. Two-sided ideals are C*-subalgebras and therefore possess approximate units. One can verify that E<E,E> is dense in E. In the case when <E,E> is dense in AE is said to be full. This does not generally hold.

ExamplesEdit

Hilbert spacesEdit

A complex Hilbert space H is a Hilbert C-module under its inner product, the complex numbers being a C*-algebra with an involution given by complex conjugation.

Vector bundlesEdit

If X is a locally compact Hausdorff space and E a vector bundle over X with a Riemannian metric g, then the space of continuous sections of E is a Hilbert C(X)-module. The inner product is given by

 \langle f,h\rangle (x):=g(f(x),h(x)).

The converse holds as well: Every countably generated Hilbert C*-module over a commutative C*-algebra A = C(X) is isomorphic to the space of sections vanishing at infinity of a continuous field of Hilbert spaces over X.

C*-algebrasEdit

Any C*-algebra A is a Hilbert A-module under the inner product <a,b> = a*b. By the C*-identity, the Hilbert module norm coincides with C*-norm on A.

The (algebraic) direct sum of n copies of A

 A^n = \oplus_1^n A

can be made into a Hilbert A-module by defining

\langle (a_i), (b_i) \rangle = \sum a_i^* b_i.

One may also consider the following subspace of elements in the countable direct product of A

{\displaystyle \ell _{2}(A)={\mathcal {H}}_{A}=\{(a_{i})|\sum a_{i}^{*}a_{i}{\text{ converges in }}A\}.}

Endowed with the obvious inner product (analogous to that of An), the resulting Hilbert A-module is called the standard Hilbert module. 


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.