Quantum Shape Dynamics

Quantum Shape Dynamics is an emerging research endeavour that aims to provide a quantum understanding of quantum mechanics of shapes, quantum fields on shape dynamics background, and quantization of shape dynamics.[1]

Emergence of Space in the Kinematic StructureEdit

In an article[2] recently revised, a quantum gravity phenomenon known as the emergence of space is observed for a universe consisting of N protons and electrons. The reason is the angular momentum constraint in shape dynamics in the presence of spin-1/2 particles:

{\displaystyle {\vec {J}}|\psi \rangle ={\vec {L}}|\psi \rangle +{\vec {S}}|\psi \rangle =0}
Because of this constraint, the expectation value of {\textstyle L^{2}} and {\textstyle S^{2}} is the same. Classical shape dynamics requires the expectation value of the former operator to vanish. It is related to non-existence of an absolute space. (En passé, non-existence of absolute time is related to the Hamiltonian constraint{\textstyle H|\psi \rangle =0}.) However, there are states that yields a positive eigenvalue for S^{2} and hence for L^{2} while satisfying the total angular momentum constraint for spin-1/2 particles: {\displaystyle {\vec {J}}|\psi \rangle =0}. The article[2] found out that the density of states in the total spin Hilbert space (which is of 2^N dimensional) that yields a zero expectation value for S^{2} and L^{2} as:
{\displaystyle f_{0}^{N}={\frac {N!}{2^{N}(N/2+1)!(N/2)!}}}

when N is even, and zero when it is odd. The limit of this expression approaches zero as N\to \infty . Hence it is argued that the space is almost always emergent classically for kinematic states. 


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.