Scalar–tensor–vector gravity

Scalar–tensor–vector gravity (STVG)[1] is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG (MOdified Gravity).

OverviewEdit

Scalar–tensor–vector gravity theory,[2] also known as MOdified Gravity (MOG), is based on an action principle and postulates the existence of a vector field, while elevating the three constants of the theory to scalar fields. In the weak-field approximation, STVG produces a Yukawa-like modification of the gravitational force due to a point source. Intuitively, this result can be described as follows: far from a source gravity is stronger than the Newtonian prediction, but at shorter distances, it is counteracted by a repulsive fifth force due to the vector field.

STVG has been used successfully to explain galaxy rotation curves,[3] the mass profiles of galaxy clusters,[4] gravitational lensing in the Bullet Cluster,[5] and cosmological observations[6] without the need for dark matter. On a smaller scale, in the Solar System, STVG predicts no observable deviation from general relativity.[7] The theory may also offer an explanation for the origin of inertia.[8]

Mathematical detailsEdit

STVG is formulated using the action principle. In the following discussion, a metric signature of [+,-,-,-] will be used; the speed of light is set to c=1, and we are using the following definition for the Ricci tensor:

{\displaystyle R_{\mu \nu }=\partial _{\alpha }\Gamma _{\mu \nu }^{\alpha }-\partial _{\nu }\Gamma _{\mu \alpha }^{\alpha }+\Gamma _{\mu \nu }^{\alpha }\Gamma _{\alpha \beta }^{\beta }-\Gamma _{\mu \beta }^{\alpha }\Gamma _{\alpha \nu }^{\beta }.}

We begin with the Einstein–Hilbert Lagrangian:

{\displaystyle {\mathcal {L}}_{G}=-{\frac {1}{16\pi G}}(R+2\Lambda ){\sqrt {-g}},}

where R is the trace of the Ricci tensor, G is the gravitational constant, g is the determinant of the metric tensor g_{\mu \nu }, while \Lambda  is the cosmological constant.

We introduce the Maxwell-Proca Lagrangian for the STVG vector field \phi _{\mu }:

{\displaystyle {\mathcal {L}}_{\phi }=-{\frac {1}{4\pi }}\omega \left[{\frac {1}{4}}B^{\mu \nu }B_{\mu \nu }-{\frac {1}{2}}\mu ^{2}\phi _{\mu }\phi ^{\mu }+V_{\phi }(\phi )\right]{\sqrt {-g}},}

where {\displaystyle B_{\mu \nu }=\partial _{\mu }\phi _{\nu }-\partial _{\nu }\phi _{\mu },\mu } is the mass of the vector field, \omega  characterizes the strength of the coupling between the fifth force and matter, and V_{\phi } is a self-interaction potential.

The three constants of the theory, {\displaystyle G,\mu ,} and \omega , are promoted to scalar fields by introducing associated kinetic and potential terms in the Lagrangian density:

{\displaystyle {\mathcal {L}}_{S}=-{\frac {1}{G}}\left[{\frac {1}{2}}g^{\mu \nu }\left({\frac {\nabla _{\mu }G\nabla _{\nu }G}{G^{2}}}+{\frac {\nabla _{\mu }\mu \nabla _{\nu }\mu }{\mu ^{2}}}-\nabla _{\mu }\omega \nabla _{\nu }\omega \right)+{\frac {V_{G}(G)}{G^{2}}}+{\frac {V_{\mu }(\mu )}{\mu ^{2}}}+V_{\omega }(\omega )\right]{\sqrt {-g}},}

where \nabla _{\mu } denotes covariant differentiation with respect to the metric {\displaystyle g_{\mu \nu },} while {\displaystyle V_{G},V_{\mu },} and V_{\omega } are the self-interaction potentials associated with the scalar fields.

The STVG action integral takes the form

{\displaystyle S=\int {({\mathcal {L}}_{G}+{\mathcal {L}}_{\phi }+{\mathcal {L}}_{S}+{\mathcal {L}}_{M})}~d^{4}x,}

where {{\mathcal  L}}_{M} is the ordinary matter Lagrangian density.

Spherically symmetric, static vacuum solutionEdit

The field equations of STVG can be developed from the action integral using the variational principle. First a test particle Lagrangian is postulated in the form

{\displaystyle {\mathcal {L}}_{\mathrm {TP} }=-m+\alpha \omega q_{5}\phi _{\mu }u^{\mu },}

where m is the test particle mass, \alpha  is a factor representing the nonlinearity of the theory, q_{5} is the test particle's fifth-force charge, and u^{\mu }=dx^{\mu }/ds is its four-velocity. Assuming that the fifth-force charge is proportional to mass, i.e., {\displaystyle q_{5}=\kappa m,} the value of \kappa ={\sqrt  {G_{N}/\omega }} is determined and the following equation of motion is obtained in the spherically symmetric, static gravitational field of a point mass of mass M:

{\displaystyle {\ddot {r}}=-{\frac {G_{N}M}{r^{2}}}\left[1+\alpha -\alpha (1+\mu r)e^{-\mu r}\right],}

where G_N is Newton's constant of gravitation. Further study of the field equations allows a determination of \alpha  and \mu  for a point gravitational source of mass M in the form[9]

{\displaystyle \mu ={\frac {D}{\sqrt {M}}},}
{\displaystyle \alpha ={\frac {G_{\infty }-G_{N}}{G_{N}}}{\frac {M}{({\sqrt {M}}+E)^{2}}},}

where G_{\infty }\simeq 20G_{N} is determined from cosmological observations, while for the constants D and E galaxy rotation curves yield the following values:

{\displaystyle D\simeq 6250M_{\odot }^{1/2}\mathrm {kpc} ^{-1},}
{\displaystyle E\simeq 25000M_{\odot }^{1/2},}

where M_\odot is the mass of the Sun. These results form the basis of a series of calculations that are used to confront the theory with observation.

ObservationsEdit

STVG/MOG has been applied successfully to a range of astronomical, astrophysical, and cosmological phenomena.

On the scale of the Solar System, the theory predicts no deviation[7] from the results of Newton and Einstein. This is also true for star clusters containing no more than a few million solar masses.[citation needed]

The theory accounts for the rotation curves of spiral galaxies,[3] correctly reproducing the Tully-Fisher law.[9]

STVG is in good agreement with the mass profiles of galaxy clusters.[4]

STVG can also account for key cosmological observations, including:[6]

  • The acoustic peaks in the cosmic microwave background radiation;
  • The accelerating expansion of the universe that is apparent from type Ia supernova observations;
  • The matter power spectrum of the universe that is observed in the form of galaxy-galaxy correlations.


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.