Weak isospin

In particle physicsweak isospin is a quantum number relating to the weak interaction, and parallels the idea of isospin under the strong interaction. Weak isospin is usually given the symbol  or  with the third component written as , or .[a] It can be understood as the eigenvalue of a charge operator.

The weak isospin conservation law relates to the conservation of ; all weak interactions must conserve . It is also conserved by the electromagnetic and strong interactions. However, one of the interactions is with the Higgs field. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. This changes their weak isospin (and weak hypercharge). Only a specific combination of them,  (electric charge), is conserved.  is more important than T and often the term "weak isospin" refers to the "3rd component of weak isospin".

Relation with chiralityEdit

Fermions with negative chirality (also called "left-handed" fermions) have {\displaystyle T={\tfrac {1}{2}}} and can be grouped into doublets with {\displaystyle T_{3}=\pm {\tfrac {1}{2}}} that behave the same way under the weak interaction. By convention, electrically charged fermions are assigned T_{3} with the same sign as their electric charge.[b] For example, up-type quarks (uct) have {\displaystyle T_{3}=+{\tfrac {1}{2}}} and always transform into down-type quarks (dsb), which have {\displaystyle T_{3}=-{\tfrac {1}{2}}}, and vice versa. On the other hand, a quark never decays weakly into a quark of the same T_{3}. Something similar happens with left-handed leptons, which exist as doublets containing a charged lepton (
e
, 
μ
, 
τ
) with {\displaystyle T_{3}=-{\tfrac {1}{2}}} and a neutrino (
ν
e
, 
ν
μ
, 
ν
τ
) with {\displaystyle T_{3}=+{\tfrac {1}{2}}}. In all cases, the corresponding anti-fermion has reversed chirality ("right-handed" antifermion) and reversed sign T_{3}.

Fermions with positive chirality ("right-handed" fermions) and anti-fermions with negative chirality ("left-handed" anti-fermions) have {\displaystyle T=T_{3}=0} and form singlets that do not undergo weak interactions.

The electric charge, Q, is related to weak isospin, T_{3}, and weak hypercharge{\displaystyle Y_{\mathrm {W} }}, by

{\displaystyle Q=T_{3}+{\tfrac {1}{2}}Y_{\mathrm {W} }}.
Left-handed fermions in the Standard Model[1]
Generation 1Generation 2Generation 3
FermionSymbolWeak
isospin
FermionSymbolWeak
isospin
FermionSymbolWeak
isospin
Electron neutrino\nu_e\,{\displaystyle +{\tfrac {1}{2}}\,}Muon neutrino\nu_\mu\,{\displaystyle +{\tfrac {1}{2}}\,}Tau neutrino  
Electrone^-\,{\displaystyle -{\tfrac {1}{2}}\,}Muon\mu^-\,{\displaystyle -{\tfrac {1}{2}}\,}Tau  
Up quarku\,{\displaystyle +{\tfrac {1}{2}}\,}Charm quarkc\,{\displaystyle +{\tfrac {1}{2}}\,}Top quark  
Down quarkd\,{\displaystyle -{\tfrac {1}{2}}\,}Strange quarks\,{\displaystyle -{\tfrac {1}{2}}\,}Bottom quark  
All of the above left-handed (regular) particles have corresponding
right-handed anti-particles with equal and opposite weak isospin.
All right-handed (regular) particles and left-handed anti-particles have weak isospin of 0.

Weak isospin and the W bosonsEdit

The symmetry associated with weak isospin is SU(2) and requires gauge bosons with T = 1 (
W+

W
 and 
W0
) to mediate transformations between fermions with half-integer weak isospin charges. T = 1 implies that 
W
 bosons have three different values of T_{3}:


  • W+
     boson {\displaystyle (T_{3}=+1)} is emitted in transitions {\displaystyle \left(T_{3}=+{\tfrac {1}{2}}\right)} → {\displaystyle \left(T_{3}=-{\tfrac {1}{2}}\right)}.

  • W0
     boson {\displaystyle (T_{3}=0)} would be emitted in weak interactions where T_{3} does not change, such as neutrino scattering.

  • W
     boson {\displaystyle (T_{3}=-1)} is emitted in transitions {\displaystyle \left(T_{3}=-{\tfrac {1}{2}}\right)} → {\displaystyle \left(T_{3}=+{\tfrac {1}{2}}\right)}.

Under electroweak unification, the 
W0
 boson mixes with the weak hypercharge gauge boson 
B
, resulting in the observed 
Z0
 boson and the photon of quantum electrodynamics; the resulting 
Z0
 and the photon both have weak isospin = 0.

The sum of −isospin and +charge is zero for each of the bosons, consequently, all the electroweak bosons have weak hypercharge {\displaystyle Y_{\text{W}}=0}, so unlike gluons of the color force, the electroweak bosons are unaffected by the force they mediate. 


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.